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The TURBINES 
 

Introduction  
 
In the course Ç Fundamental equations of turbomachinery È, we touched the type of 
turbomachines called turbo-receptors which is the group of the turbines.  We established there 
the fundamental equations related to this type of machines. 
 
But in this part of the course we did not study the optimal geometry to be given to the blades, 
and thus also to the channel between these blades, for the non-rotating channels (stators or 
nozzles) or the rotating channels (rotors), so that the energy, mainly due to the pressure of the 
fluid at the entrance of the machine, is transformed in mechanical energy available on the 
shaft using the best possible conditions, i.e. with the maximum efficiency. 
 
This is what will be explained in this part of the course where we shall also examine the 
internal organization of axial turbines that is the most common type of turbines used in the 
industry or in aircraft and helicopter gas turbine engines. We shall also see some applications 
of radial turbines (centripetal turbines) in hydraulic turbines. 
 
The axial turbine is a turbo-receptor in which a fluid particle going through the machine is 
moving along a streamline at an almost constant distance from the shaft of the rotor.  In the 
radial turbine, the fluid is moving radialy inwards (from a large radius to a small radius). 
 
Hydraulic turbines are driven by an incompressible fluid, as water in hydraulic power stations 
and oil in lubrication systems. Steam turbines and gas turbines are driven by a compressible 
fluid, steam or gas, with well defined thermodynamic properties that are fundamentally 
important for the quantitative studies relative to these machines, i.e. in the numerical 
computations to estimate their power, mass flow rates, temperatures, cross sections, É 
 
The working principle as well as the determination of the shape to give to the blades and the 
interblade channel is rather equivalent whatever the used compressible fluid, a gas or steam. 
 
In the case of steam, one uses for the computations the requested tables and thermodynamic 
diagrams for steam (e.g. the Mollier diagram) and, in the case of a gas, the law of perfect 
gases or an entropy diagram of the considered gas (e.g. air or combustion gases). 
 
Turbine design is more dictated by the thermodynamic characteristics of the fluid that by the 
aerodynamics and of course that steam turbines will therefore be quite different compared 
with turbines for gas regarding their architecture and the materials used.  Large steam turbines 
are commonly fed with steam at a pressure higher than 150 bar and 700¡C whereas their 
outlet section is linked with a condenser where the pressure can be lower than 0,05 bar.  That 
leads to a specific volume of the steam lower than 0,015 m!/kg at their inlet that can increase 
higher than 25 m!/kg at their exhaust section, i.e. together with a pressure decrease larger than 
150 bar the fluid expansion ratio is larger than 900.  In gas turbines, the turbine is fed at 
maximum a pressure of 45 bar but at temperatures that can reach 1650¡C.  The pressure 
decrease that takes place here down to the atmospheric pressure or a bit higher, goes together 
with a specific volume increase ratio of only a few tens.  
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Steam turbines of large electricity power plants have therefore much larger dimensions than  
gas turbines.  They will be equipped with a higher number of discs and rotating and non-
rotating blade rows.  Gas turbines have only a few rotor wheels but they are made of special 
superalloys able to resist at much larger mechanical and thermal stresses. 
 
As we limit ourselves here to the principles of the architecture and the working of turbines 
(flows, forces, torque, velocity triangles, É) and not to the technological aspects or the 
selection of the materials used for their construction, it is not very important that we make the 
difference between steam and gas as the working fluid.  We can suppose that we work with  
steam and the numerical applications will be done using the Mollier diagram or steam tables. 
 
There is no doubt that in our industrial world turbines are, and will remain for a long time, 
quite crucial machines.  Steam turbines are driving electric generators in large thermal and 
nuclear power plants.  Gas turbines are used in aircraft propulsion systems, in power plants 
(for the base solution but also peak units or emergency solutions) but also for ship propulsion 
and even in terrestrial transport vehicles.  In facilities above a given treshhold power, gas 
turbines are now more often selected than diesel or gasoline engines. 
 
A part of this course will also be dedicated to hydraulic turbines (used with water) where not 
only axial turbines but also radial turbines and even hybrid turbines will be studied and 
applications discussed. 
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Chapter 1 
 

Stages of axial turbines 
 

1. Organization of a stage - 2D flow 
 
The simplest architecture of a turbine stage is made of a fixed distributor feeding a rotating 
wheel.  Distributor and rotor have vanes and blades, fixed for the distributor, mobile for the 
rotor also called the receptor. 
 
The problem is to determine the shape to be given to these vanes and blades so that, when the 
working mode of the stage has been selected, the evolution of the fluid takes place with the 
minimum of flow losses over the (fixed) vanes and the (rotating) blades. 
 
In this study, we shall limit ourselves to the fluid flow located on the mean cylinder, which is 
intersecting the blades and vanes on the mid-span.  One speaks about a 2D study of the stage. 
 
If one examines a rotor of a turbine (Fig. 1), one notes that the blades have a limited 
height/span equal to the difference of the radii of the tip and hub circumferences:  
 

hblade = r tip circumf Ð rhub circumf 

 

and that this span is not constant over the axial direction. 
 
The intersection with the mean cylinder determines the shape of the blades at their mid-span.  
This intersection is after that spread over a flat surface, what gives the representation as 
shown on Figure 2. 
 
The 2D study consists in considering the distributor and the receptor as a grid of blades that 
are with a constant distance between them (called the spacing or pitch, measured on the mean 
cylinder) and a constant span h. These blades are perpendicular to the stream surface that is 
the surface tangent to the mean cylinder in the axial direction. One supposes also that the flow 
is identical over the whole span of the blades. 
 
One reduces like this the study of the real 3D flow to this one, much easier, of the 2D flow, 
with the following limitations: 

- Limited span of the blades, 
- Non-constant span of the blades,  
- No presence of the inner and outer carter, 
- Swirling phenomena that can take place between and over the rotating blades not 

considered. 
 
That means also that, after that the 2D analysis has been made (what is a very valid and 
currently applied solution for pre-design exercises), one must understand how the real 3D  
flow differs from the 2D and mainly check if the results from the 2D study remains valid in 
reality. 
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¤ 1. Impulse stage or stage at constant pressure in the receptor 
 

A. Impulse stage with one single velocity drop 
 

1. Definition of the stage 
 
In an impulse stage, the expansion of the gas is taking place ONLY in the channels of the 
fixed distributor.  That means also that, normally, the pressure remains constant in the 
receptor. 
 
In the nozzles of the distributor, the pressure energy of the gas at the entrance of the stage is 
transformed, almost only, in kinetic energy that is on its turn transformed in mechanical work, 
available on the rotor shaft, when the fluid goes through the receptor channels. 
 
The receptor being unique, the transformation of the kinetic energy in mechanical work 
happens in one single velocity drop in the receptor what gives the name to this stage, an 
impulse turbine with one velocity drop (or a single stage). 
 
On Figure 2, we have shown the evolutions of the pressure and of the absolute velocity from 
the inlet of the vanes up to the outlet of the blades. 
 

2. Evolution of the gas/steam Ð Velocity triangles 
 

2.1 Computation of the flow velocity v1 at the outlet of the stator vanes 
 
The evolution is sketched on a diagram (T,S) on Figure 3, that is very convenient for 
qualitative discussions.  The computations can be done very easily using a Mollier diagram (s, 
h) and, less quickly but with a higher precision, using thermodynamic tables of the gas or the 
steam. 
 
The gas at the entrance of the nozzles is at the conditions noted ÒoÓ : pressure po, temperature 
to (maybe the title xo), velocity vo (often negligible).  On Figure 3, the representative point of 
the gas at the entrance of the vanes is D. 
 
If the pressure drop in the stage, po Ð p1, is known (fixed or selected), the shape to be given to 
the expansion nozzles of the distributor, can be calculated from the methods seen in the 
course of thermodynamics. The ratio pin/pout is called the expansion ratio of the turbine, ER. 
 
The adiabatic expansion in the nozzle can be written:  
 

!  

v1
2 " v0

2

2
= h0 " h1 

 

101 .2 hhv t !=  
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as ht0 = ht1 = ht1i !  h0 
 

The value of the enthalpy 

!  

h1can be determined knowing or estimating the reheat coefficient " . 

i

i

hh

hh

10

11

!

!
="  

 
as the enthalpy h1i can be easily calculated using the isentropic law or read ( )00 thh = .   

 
Then:  

( )( )io hhvv 10
2

1 .12 !!+= "  

 
The isentropic evolution is represented by the vertical line DE on the (T,S) diagram (Fig. 3), 
the real adiabatic evolution is represented with the curve DF. In F, the pressure is p1 and the 
enthalpy h1. 
 
The loss in kinetic energy due to friction between sections 0 and 1 is represented by the 
projection area EF .  It can be calculated using the following formula: 
 

( )ioi
i hhhh

vv
111

2
1

2
1

2
!=!=

!
"  

 
If, as it is often the case, the absolute velocity at the entrance vo is negligible, the elements in 
the entrance section can be considered as being the total elements ( )00 thh =  and the velocity 

v1 can be calculated using the speed reduction coefficient 
iv

v

1

1=! , with the following 

formula: 

ihhv 101 .2 != "  

!  

" = 1# $  
 

2.2 Velocity triangle in section 1 
 
The construction of the velocity triangles requests three elements from which only one, the 
velocity v1, is known at the moment.  One supposes then that the tangential speed  mru !=1 is 
also known (" is the rotation speed of the wheel in rad/s and rm the mean radius at the 
entrance of the wheel in meter) but also the angle #1 made between the absolute velocity 1v  

and the tangential one 1u . 
 
We shall come back on these choices afterwards in order to see if there is no optimal value for 
these elements. 
 
Figure 4 gives the velocity triangles in section 1.  It allows the determination of the relative 
velocity w1 and the angle $1 made between this one and u1. This velocity and angle can also 
be calculated, using the following formulae:  
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2.3 Channel in the rotor blades Ð Relative velocity w2 at receptor exit 
 
The shape to be given to the rotor channels must be so that, considering the real flow (friction 
losses), the pressure p2 at the exit of the reception rotor become equal to the pressure p1 at the 
entrance. 
 
The tangential velocities on the mean cylinder being equal (u2 = u1), the equation of the 
kinetic energy applied to the flow in mobile channels, between the sections 1 and 2, is written: 
 

! ""=
" 2

1

"
2
1

2
2

2

p

p fwdpv
ww

 

 

If p1 must be the same as p2, it needs: 0
2

"
2
1

2
2 <!=

!
fw

ww
 

 
If the flow would be without any friction, w2 would be equal to w1. But, in reality, w2 is lower 
than w1 and the difference between the two is increasing when the losses are higher. The 
application to this flow that can be considered as adiabatic, of the energy equation gives:  
 

21

2
1

2
2

2
hh

ww
!=

!
 

 
what shows that the enthalpy of the gas has increased between the inlet and the outlet of the 
rotor. 
Knowing that the relative velocity has decreased in the reception rotor is a qualitative 
information that does not allow the calculation of w2.  This calculation requests to know the 
relative speed reduction ratio: 

1

2

w
w

=!  

with a value depending on"
fw : % is decreasing when the losses increases.   

 
The coefficient ! depends on the shape of the recepting blades, among others on their 
camber, their chord, their pitch, the flow velocity w1 at their inlet, their thickness and the 
direction of w1 with regard to the direction of the tangent at the entrance of the blades.  
Experimental values have shown that the values of % are between 0,8 and 0,9. When % has 
been selected/estimated, the relative velocity w2 and the enthalpy h2 can be calculated:  

 

( )
2

1
2

2
12

1

2
2

2
1

12

12

whwwhh

ww
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When positioning the representative point G (p1 = p2 ; h2) of the gas at the outlet of the rotor 
on the diagram (T,S), one sees that the specific volume v of the gas / steam can be 
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determined, at the inlet (p1 in F) as well as at the outlet (v2 en G) of the receptor.  The flow 
sections 1 and 2 are then to be calculated by using the equation of the mass flow rate and 
considering the relative velocities w1 and w2 normal to these sections.  We have to note that in 
a flow without any friction, w2 = w1 and h2 = h1 so that the points F and G are at the same 
place and that the flow sections 1 and 2 are the same. 
 

2.4 Shape of the rotor blades 
 
An identical flow section at the inlet and at the outlet of the receptor is easily obtained when 
we give to the blades a symmetric shape between the inlet and the outlet, i.e. by choosing an 
exit angle 2! of the blade complementary with the inlet angle 1!

!  

("1  and 

!  

" 2  are the solid 

angles made by the tangents of the blades with the tangential velocities 1u and 2u  ; 1! is 

lower than 90¡, 2! higher). 
 
This is normally this geometry that is selected due to the ease of its realization.  But the real 
flow requests, seen the reduction of w and the increase of v in the rotor, that the flow section 2 
is larger than section 1.  With symmetric blades, one satisfies to this obligation by increasing 
the height h of the blades between the inlet and the outlet of the wheel. 
 
In a pre-design exercise of a stage, one will always adopt a solid angle 1! of the blades equal 
to the flow angle 1! obtained from the velocity triangles at the inlet.  In this way, the flow 
direction at the inlet of the rotor is also tangent to the blade and there is no shock at the inlet.  
If, later on, the working conditions (e.g. another rotation speed N) are so that the flow 
angle 1!  becomes different from the solid angle 1! , extra losses must be considered due to 
shocks at the inlet of the blade. 
 

2.5 Velocity triangle at the exit of the receptor 
 
If one admits that 11 !! = and if one adopts symmetric blades, the value to be given to the 

angle 2! is 12 !"! #= . As long as the flow in the rotor remains sane, the relative velocity w2 

remains tangent to the blades at their exit and 22 !! = . 
 
Knowing 121212 , uuetww =!== "#"$ , one can build the velocity triangles in 
section 2 (Fig. 4) and then calculate:  
 

222
2
2

2
22 cos2 !wuwuv ++=  

 

2

222
2

cos
cos

v
wu !

"
+

=  

2.6 Losses in the rotor channels 
 
Without friction losses, the velocities w1 and w2, the enthalpies h1 and h2, the temperatures T1 
and T2 would be equal. Due to these frictions, w2 < w1 and the relative kinetic energy at the 
exit of the receptor is lower than at the inlet.  The loss in kinetic energy is given by: 
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On the (T,S) diagram of Figure 3, this loss is represented by the projected area FG . 
 

2.7 Losses at the receptor exit 
 

At the exit of the receptor, the gas still has a velocity v2 and thus a kinetic energy 
2

2
2V

, per kg 

of fluid.  This kinetic energy is lost for the stage.  The total enthalpy of the fluid, at the exit of 
the stage, is:  

2

2
2

22

v
hht +=  

corresponding to the representative point H on the (T,S) diagram of Fig. 3. The loss due to the 
kinetic energy at the exit is represented by the projection area GH . 
 

If 
2

2
2v is a loss for the stage, it can nevertheless, if the machine is made of more than just one 

stage, be recuperated, in total or partly, at the entrance of the next stage and then it is not 
anymore a loss for the complete machine. 
 

3. Power on the wheel shaft  (PR) 
 

Rm& being the mass flow rate through the rotor, the power obtained from the fluid on this rotor 
is given by the formula of Euler-Rateau:  
 

( )2211 coscos !! vvumP RR "= &  
with mru != . 
 
When using the relations of the velocity triangles as well as the kinetic energy equation (with 
u2 = u1), one can write the following:  
 

!!
"

#
$$
%

& '
'

'
=
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2
2

2
1

2
2

2
1 wwvv

mP RR &
 

( ) ( )
2021 ttRttR hhmhhm !=!= &&  
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"
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p

p fR wdpv
vv
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As, in this stage, p1 = p2, the last formula can also be written in this way: 
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These formulae show clearly that the working principle of the impulse stage is as we have 
explained it previously.  The torque applied by the gas on the rotor is given by:  
 

( )mR
R rvvm

P
2211 coscos !!

"
#= &  

 
This formula shows how the variation of the velocity v, in amplitude and in direction, gives 
birth to the force created by the gas on the rotor blades, leading to the rotation of the shaft. 
 
The iso-enthalpy line 

10 tt hh = is draught on the (T,S) diagram of Figure 3 and K is the 

intersection point of this iso-enthalpy line with the isobar line p2 = p1 . The energy transmitted 
by the fluid to the rotor (in J/kg) is represented by the projection area HK .   
 
Indeed:  

R

R
tt m

P
hhHK

&
=!=

21
 

 

4. Degree of reaction  (R) 
 
Per definition, it is equal to the ratio between the power of the fluid on the wheel in reactive 
working, over the total power given by the fluid to the rotor:  
 

!  

R =
PR( )reaction

PR

 

 

As: 0
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The degree of reaction is almost zero.  It is in fact slightly negative.  It would be strictly zero 
if there would not be any friction losses ("fw = 0).  It is the reason why this turbine is called an  

Ç impulse stage È or an Ç action stage È. 
 

5. Stage efficiency - Pre-design  (see also the appendix on this part) 

5.1 The stage efficiency  (E! ) 

 
The stage efficiency E! is, per definition, the ratio between the power of the stage and the 
theoretical available power that is equal to the product of the mass flow rate Rm&  with the 
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available kinetic energy if the expansion in the distributor is isentropic and complete, and if 
there is pas no remaining kinetic energy at the exit of the stage. 
 
 
This theoretically available power is therefore (Fig. 3): 

 

( ) !!
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and the stage efficiency can be written as follows:  
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Note that this stage efficiency is also equal to the product of the distributor efficiency D!  with 
the rotor efficiency R! .  Indeed, E! can be written:  
 

!  

" E =
ú m R

v1
2

2

ú m R
v1i

2

2

x
ú m R uv1cos#1 $ uv2 cos# 2( )

ú m R
v1

2

2

=" D ." R 

 
In this expression, the first ratio is equal to the distributor (or stator or NGV) efficiency and 
the second is the receptor (rotor) efficiency.   
 
In ¤ 2, we had written that the values of #1 and of u had to be known in order to build the 
velocity triangle at the inlet.  We had chosen them mentioning that this choice had to be 
reexamined afterwards with the view on an optimization.  It is now time to determine the best 
values to be given to these variables so that the stage efficiency becomes maximum. 
 
In a stage design project, one can always adopt a solid angle 1! for the blades at the inlet of 

the rotor so that the relative fluid velocity 1w  is parallel to the direction of the tangent to the 
leading edge of the blade.  Like this, there will not be any shock at the inlet and the velocity 
reduction coefficient % is limited to the value %r corresponding to the friction in the rotor 
channels. 
 
If the choice for symmetric blades is made, as soon as %r is estimated, one can build and 
calculate the elements of the velocity triangles at the exit in function of those at the entrance.   
 
One gets:  

( )uvuwuwuv rr !!=!=+= 11112222 coscoscoscos "#$#$"  
 

and thus:   !
"

#
$
%

&
''
(
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-+-=
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v
u

v
u
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what shows that:  

!  

" E = f " D ; u /v1 ;#1 et $ 1( )  
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with  

!  

" D =
V1

2

V1i
2 =# 2 =1$ % 

 
In this expression of the stage efficiency, the velocities u and v are present in the form of the 

parameter 
1v

u
 that is noted &.  This new variable is called the Ç speed coefficient È. 

 

!  

" E = 2" D 1+# r( )$ cos%1 &$+# r (cos%1 &'( )  
 

5.2 Optimal values of the elements in the velocity triangles 
 
Normally, the distributor efficiency D!  is function of the angle #1 that is related to the camber 
given to the distributor vanes.  It depends also on v1 that depends on its turn on the pressure 

drop chute 
1

0

P
p

 and is thus related to the nozzle geometry (convergent or convergent-

divergent) and of the vanes chord. 
 
The velocity coefficient !  is also function of #1 and of the velocity v1, because its value  

depends mainly on the deviation angle r!"" .12 # is also function of the relative velocity w1. 
 
Due to a lack of information about these functions, the optimization of E! in function of all 
these parameters has not been done.  But, as the influence of v1, #1, or w1 on D! and r! is 
limited, one can, in first approximation, suppose that D! and r! are constant and just optimize 

E! in function of & and #1. 
 
For a given value of #1, the stage efficiency will be maximum for the value of & that makes 
the derivative of E! with & equal to zero.  The calculation of this derivative shows that E! will 

be maximum for 
2

cos 1!
" =opt , and the stage efficiency is then equal to ( ) .12 2

optrDE !"## +=  

 
This formula shows that the optimum value of the stage efficiency corresponds to the value of 
#1 that makes cos #1 as large as possible.  For that, #1 needs to be very small.  But the smaller 
#1 the smaller the axial component v1 sin #1 of the velocity, what makes that the flow section 
of the turbine needs to increase largely, leading to longer vanes and blades that can become 
exagerated. 
 
Moreover, when #1 decreases, the efficiency of the stator nozzles that need to have a larger 
chord and a higher curvature, is negatively influenced.  For these reasons, in practical cases, 
the angle #1 is chosen between 15 and 25¡. 
 
The curve of E! in function of & for a given value of #1 is given on Figure 5.  
 
The value of D! is typically between 0,9 and 0,96 and the one of r! between 0,8 and 0,95 for 
a value of #1 around 20¡, the maximum possible value of the stage efficiency is around 0.8. 
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5.3 Selection of a speed coefficient different from the optimum 
 

We have just seen that the optimum value of the speed coefficient 
1v

u
=!  is .

2
cos 1!

 One can 

nevertheless design and build a machine for which ! is selected at a different value than opt! . 

It is what it done when the pressure drop in the stage provides a value for v1 so large that the 
optimum value of the tangential velocity  
 

22
cos 111 vv

uopt !=
"

 

 
takes an unacceptable value. This velocity cannot indeed go over a treshhold value related to 
the material stresses due to the centrifugal effects and the thermal gradients in the superalloy 
of the wheel and the blades.  This maximum value of u depends on the nature of the metal of 
the components and its temperature.  It is normally situated between 250 and 300 m/s but can 
reach in some special cases when the flow is not very hot something like 400 m/s using 
special alloys and an adapted design (like a blisk). 
 
The limitation of u can thus, at high values of v1, impose a calculation and a design of the 
stage using a speed coefficient ! lower than the optimum.  The stage efficiency would then 
never exceed the value of E!  indicated on Figure 5 for the angle 1!  chosen. The maximum 
maximorum efficiency that can be obtained is given by the following formula: 
 

( ) ( )!"!#$$ %+= 1cos12 DR  
 
We have to note that, in a pre-design, whatever the selected value for ,! one always considers 
that in the working conditions of the design (the so-called Design Point conditions), the 
velocity w1 is tangent to the blades at the inlet ( )11 !! = .  The incoming flow is then 
considered to be without any shock of the fluid against the blades, reducing therefore the 
losses to consider. 
 

6. Performance of a stage outside the design conditions (off-design)  
 

6.1 Influence on the stage efficiency 
 
The calculation of the stage fixes its construction characteristics: shape and dimensions of the 
vanes channels (convergent or convergent-divergent channels, angle 1! ) as well as the blades 

channels (angles 21 !! et ). 
 
What is the influence on the stage efficiency in off-design conditions ?  The importance of 
this question is of course due to the fact that a turbine is not always working in the conditions 
for which is was calculated whatever the reason can be, e.g. change in the atmospheric 
conditions. 
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The distributor had been calculated for a well selected value of the ratio p0/p1 called ( )dpp 10 /  
(d=design) and for this value, the stator channels are, depending on the machine, either  
convergent or convergent-divergent. 
 
If, during operations, the pressure drop (expansion ratio) becomes different from ( )dpp 10 /  : 
 

- With distributor channels that are convergent-divergent, the geometry calculated and 
built for these channels is rather different from it should be with these new off-design 
conditions and the nozzle efficiency D!  decreases; 

 
- With distributor channels that are simply convergent, the flow will adapt itself to the 

existing geometry and D!  will not be largely influenced at the condition that the ratio  
p0/p1 (the ER) stays lower than co pp / (pc being the critical pressure). 

 
If the working conditions are so that u and v become different than the values ud and v1d for 
which the stage has been calculated, the performance of the rotor is not much affected when 

the deformation of the velocity triangles is so that the ratio 
1v
u

 stays identical to 
d

d

v
u

1

. 

If it is not the case, the fluid angle 1!  at the inlet of the receptor becomes different from the 

blade construction angle d1!  and shocks takes place at the inlet of the rotor (Fig. 6).  In order 
to consider these shocks, the relative velocity w2 at the exit needs to be calculated using the 
following formula:  

112 www ir !!! ==  
 

where the coefficient r!  remains function of the blade shape, of the blade dimensions and of 
the inlet velocity w1 whereas the new coefficient i! is introduced to take into account the 

presence of shocks: the maximum value of i! is 1 (for 11 !! = ) and it decreases gradually 

with the increase of the difference 11 !! " . 

 
As far as the working conditions are not differing too much from the design conditions of the 
stage, the flow remains clean and it follows the shape of the channels between the blades.  
One can expect that the relative velocity w2 is still tangent to the blades at the exit of the rotor 
and d222 !!! == . 
 
The real values of DdD !! <  and of d!! < being determined by an off-design working 
condition, one is able, with these new values, to build the velocity triangles and to calculate 
the stage efficiency using the formula:  
 

( )
2
1

2211 coscos2
v
vvu

DE
!!

""
#

=  

 
It is in fact rather difficult to pre-determine rather precisely how a turbine stage will behave in 
off-design conditions, i.e. to evaluate the value the stage efficiency E! when u and v1 differ 
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from the calculation conditions. It is for example quite complicated due to the lack of 
quantitative information for the values to give to D! , r!  and i! . 

6.2 The stage characteristics 
 
The stage characteristics is the curve of the torque TR on the wheel / shaft in function of the 
rotation speed N or of the tangential velocity mru != , at a given Rm& , a given #P through the 
stage and a fixed temperature at the inlet.  
 

( ) mR
R

R rvvmPT 2211 coscos !!
"

#== &  

 
If we can accept that :22 !! = we have: 
 

1122 cos.cos !"# wuv =  
and then:  
 

( ) mRR rwuvmT 1111 coscos !"# +$= &  
 

The mass flow rate and the expansion ratio being constant, the velocity v1 is also constant as 
well as .cos 11 !v  The velocity triangles at the inlet show that the relative velocity w1 increases 
when the tangential velocity u decreases.  For the parameter ! , it decreases gradually when u 

is changing compared with its design value ud as 1! is changing compared with d1! . The 
variations of u and w1 are more important than the one in ! .  
TR increases when u decreases. The performance curve ( )nTR  of the stage is a decreasing 
function of N (Fig. 7).  It is at very low rotation speed that the torque on the shaft is 
maximum. 
 
Another important performance curve of a turbine is the one showing the reduced mass flow 
rate in function of the ER for various reduced rotation speeds. 
 

7. Pressure drop in the optimum conditions 
 
To obtain the maximum stage efficiency, ii is requested to work with: 

2
1

2
cos 1

1

!==
"

#
v
u

 

If the entrance velocity v0  is negligible, one has also: 

ihhv 101 12 !!= "  

and the value to be given to u to obtain E!  optimum is:  

ihhu 10125.0 !!" #  
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The tangential velocity u has some limitations. This can lead to limit the enthalpy drop 

ihh 10 ! , and thus the pressure drop 10 pp ! , in the stage in order to reach the optimum value 
of the stage efficiency. 
 

8. Numerical example 
 

LetÕs consider an impulse stage fed with dry steam (title x=1) at the pressure of 12 kgf/cm' 
effective. 
The outlet pressure corresponds to a void of 90 %. 
The entrance velocity v0 is negligible and the reheat coefficient of the distributor 1,0=! . 
 
When putting the isentropic evolution on the Mollier diagram, one reads on it:  
 

h0 =665 kcal/kg 
(1 kcal = 4187 J) 

h1i = 495 kcal/kg 
 

The isentropic enthalpy drop reaches kgJxhh i /419717010 =! , a rather low value 
compared with the one available in large steam turbines. This gives a velocity at the exit of 
the distributor: 
 

smxv /113241871709,021 ==  
 
To reach the maximum stage efficiency, the tangential velocity u should be 566 m/s, a much 
too high value. 
 
If u = 300 m/s is the maximum acceptable value considering the material of the rotor and of 
the blades, we obtain: 
 

265,0
1132
300

1

===
v
u

!  

 
If in the formula of the stage efficiency:  
 

( ) ( )!"!#$$ %+= 1cos12 DE  
 
we take 

95,0=D!   9,0== r!!   95,018coscos 1 == o!  
 
we obtain a stage efficiency of about 66%, a quite low value indeed. 
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B. Impulse stage with two velocity drops or two-stage impulse turbine 
 

1. Need for two velocity drops (or two stages) 
 
When the pressure drop available and thus enthalpy drop is quite large, the values of v1 
obtained with the formula: 

( )( )ihhv 101 12 !!= "  

 
are not compatible with a working at the optimum stage efficiency in a stage with a single 
velocity drop, because the acceptable values for u prohibit a system working at speed 
coefficient ! near 0,5. 
 
The too low efficiency can be explained by the fact that the fluid leaves the receptor with an 

important absolute kinetic energy 

!  

v2
2

2
 that is lost for the stage. 

The objective of an impulse stage with two velocity drops is to recuperate the major part of 
this kinetic energy and to transform it in mechanical energy available on the shaft, by leaving 
the fluid over a second rotor (a second receptor) that is, a priori, mounted on the same shaft as 
the first one. 
 

2. Organization and way of working  
 
The impulse stage with two velocity drops contains: 
 

- A fixed distributor D in which the gas expands from the inlet pressure p0 down to the 
pressure p1, the velocity increases from 10 0 vˆv ! .  The pressure remains constant in 
the rest of the stage. 

- A first receptor 'R  transforms a part of the kinetic energy 
2

2
1v  in mechanical work.  

The gas leaves the receptor with a kinetic energy 
22

2
1

2
2 vv

<  but still high. 

 
- A fixed inverter I, in which there is no transformation of any energy, receives the fluid 

leaving 'R  with a velocity 2v  that has a direction incompatible with a rotation in the 

same direction as 'R , for a second rotor ''R  mounted on the same shaft.  The inverter I 
modifies the direction of the fluid and re-orientates it in the right direction before its 
entrance in the second receptor.  This inverter is not mandatory if RÕ and RÕÕ are 
allowed to turn in opposite directions. 

- A second receptor"R that transforms the kinetic energy of the fluid, at its inlet, in 
mechanical work. 

 
The gas / steam leaves this second receptor with a low absolute velocity and thus a lost kinetic 
energy at the exit of the stage that is limited. 
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As already, the pressure remains constant in the two receptors and in the inverter. 
 

3. Evolution of the fluid Ð Velocity triangles 
 

3.1 Absolute velocity at the exit of the distributor 
 
We sketch again the evolution of the fluid on a (T, S) diagram (Fig. 9). 
The initial state of the gas / steam is p0, T0 or x0 and v0, the velocity v0 being, most often 
negligible. 
When we know the pressure p1 and the reheat coefficient ! or the velocity reduction ! , it is 
easy to compute the velocity v1 (cf. supra). 

3.2 Velocity triangle in section 1 
 
If the selection of the angle 1! and of the tangential velocity u1 is made, one can, as for the 
impulse stage with one single velocity drop, easily build the velocity triangles in section 1, 
exit of the distributor channels and inlet of the first rotor blade row.  These triangles are 
represented on Figure 10. The velocity w1 and the angle 1!  can also be calculated. 

3.3 Shape of the rotor blades Ð Relative velocity at the exhaust 
 
The pressure remains constant in the rotor, the relative velocity w2 is lower than w1. We have: 
 

1
'

2 ww !=  
 

with '!  the velocity reduction coefficient of the first rotor blade row.  One can then 
calculate the enthalpy h2 using: 
 

2

2
2

2
1

12

wwhh !
+=  

 
and to define in G the state of the gas / steam at the exit of the first rotor (Fig. 9), after the 
evolution through this rotor following the line FG. 
 
We suppose that the blades have a symmetric shape, with regard to a surface perpendicular to 
the rotor axis. 
In the case of a machine in design conditions, the angle 1! of the blades at the entrance is 
chosen equal to the flow angle 1!  given by the velocity triangle. 

3.4 Velocity triangle in section 2 
 

If the blades have a symmetric section, 12 180 !! "= o . 
As u2 = u1, knowing w2 allows (Fig. 10) the construction of the velocity triangle in section 2. 
One calculates then 22 !etv . 
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3.5 Shape of the vanes in the inverter 
 
These fixed vanes are supposed to be symmetric.  Their function is to collect the fluid leaving 
the first receptor with the velocity v2 and the flow angle 2! , and to modify its direction under 
an angle 3! , in this case equal to 180¡- 2! , on the second receptor. 

In the design conditions, the solid angle 2!  at the inlet of the inverter is taken equal to 2! , 
the fluid angle at the exit of the first receptor. 
If the flow at the inlet of the second receptor is Ç clean È :  
 

233 180 !!! "== o  

3.6 Evolution of the fluid in the inverter 
 
The equation of the kinetic energy, applied to the fluid flowing through the fixed channels 
between the vanes of the inverter, can be written:  
 

! "=
" 3

2

'
2
2

2
3

2

p

p fwdpv
vv

 

 
and the energy equation gives: 
 

32

2
2

2
3

2
hh

vv
!=

!
 

 
dp being selected to be zero, if the flow would be without friction:  
 

2323 hhetvv !=  
 

In reality, due to the friction,  
 

v3 < v2     and h3 > h2 

 

Thanks to the (experimental) velocity reduction coefficient of the inverter, the velocity v3 and 
the enthalpy h3 are calculated using: 

( )
2

1 22
2

2323
I

I
vhhetvv !

!
"

+==  

 
The evolution in the inverter is following the line GH (Fig. 9), H representing the state of the 
fluid at the exit of the inverter. 
 

3.7 Velocity triangle in section 3 
 
When knowing v3, $3   and u3 = u2, one can, as shown on Figure 10, build the velocity triangle 
in section 3, and extract the values of w3 and %3. 
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3.8 Blade shape of the second rotor 
 
In a machine project, one selects the solid angle of the blades 3! , at the inlet of the second 
receptor, equal to %3 of the fluid at the exit of the inverter. We suppose also that these blades 
are symmetric. 
The angle 3!  is larger than 1! , the blades of the second receptor have less curvature than in 

the first one, thus less friction losses ."
fw  

3.9 Velocity triangle in exhaust section 4 
 
The flow in the second receptor is similar to the one in the first receptor.  The relative velocity 
at the exit is lower than at the inlet. 
 
This velocity is equal to:    3

"
4 .ww !=  

 
with "! the velocity reduction coefficient of the second rotor. 
The enthalpy h4 is calculated by: 

( )
2

1
2

2"2
3

3

2
4

2
3

34

!"
+=

"
+=

w
h

ww
hh  

 
The angle 4! of the blades being known, the velocity triangles (Fig. 10) can be draught and v4 
as well as $4 can be calculated. 
 
The evolution, on a (T, S) diagram (Fig. 9), is along the line HK, with K the representative 
point of the state of the fluid at the exit of the second rotor. 
 

3.10    Loss at the exit of the stage 
 

The kinetic energy of the gas, in section 4, is still 
2

2
4v

. 

This energy is lost for the stage.  Point L, on Figure 9, is representative of the state of the fluid 
at pressure p1 and total enthalpy ht4 : 

2

2
4

44

v
hht +=  

 
If the fluid flows through a third stage, this kinetic energy can be recuperated, totally or 
partially, under a calorific form available at the inlet of this third stage. 
 

4. Power PR on the rotor 
 
The power transferred from the gas to the two receptors is: 
 

"'
RRR PPP +=  

 
with, using the formula of Euler-Rateau: 
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( ) ( )21

'
2211

'' coscos ttRRR hhmvvumP !=!= && ""  
 

( ) ( )43
"

4433
"" coscos ttRRR hhmvvumP !=!= && ""  

 
 

When supposing RRR mmm &&& == "'  then: 
 

( )44332211 coscoscoscos !!!! vvvvumP RR "+"= &  
 

( )4321 ttttR hhhhm !+!= &  
 
As in flows in fixed channels: 01 tt hh =  and 23 tt hh =  : 
 

( )40 ttRR hhmP != &  
 

Have a look at what is representing the ratio RR mP &/  on the (T, S) diagram ? 
 

5. Stage efficiency Ð Pre-design of the stage 
 

5.1 Definition of the 2-stage efficiency  
 
We define the stage efficiency as the ratio: 
 

( )
( )itR

ttR
E hhm

hhm

10

40

!
!

=
&
&

"  

 
that can also be written: 
 

( )

2

coscoscoscos
2
1

44332211

i
R

R
E v

m

vvvvum

&

& !!!!
"

###
=  

 
( )

2
1

44332211
2
1

2
1 coscoscoscos

.2
v

vvvvu
v
v

i

!!!! "+"
=  

 
In this formula, the first ratio is nothing else than the efficiency of the distributor D! . 
 
When the blades show a symmetric shape and that the angles of these blades are taken equal 
to those calculated by the study of the flow (velocity triangles), the values to give to the 
velocity reduction coefficients, or the estimation of these values, allow the computation of all 
the elements of the second ratio from u, v1 and 1! . 
The inlet flows in the rotors and in the inverter are without shock, so the values to give to the 
velocity reduction coefficients depend only on the blade shapes (value r! as seen previously). 
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In order to find the optimum value to give to u, v1 and 1! , one has to establish and discuss a 
expression of the stage efficiency like: 
 

!  

" E = f " D;u/v1;#1;$
';$ I ,$

"( )      (

!  

" '' >" ' ) 
 

5.2 Computation of the 2-stage efficiency 
 
The elements of the velocity triangles in section 4 are found in function of those of section 3, 
that we found based on those of section 2 that is based on section 1. One finally gets the 
following expression:  
 

33
"

4444 coscoscos !"!# wuwuv $=+=  
 

( )uvu !!= 33
" cos"#  

 

2233 coscos !"! vv I#=  
 

11
'

2222 coscoscos !"!# wuwuv $=+=  
 

( )uvu !!= 11
' cos"#  

 

and using the ratio !=
1v

u
 (speed coefficient), 

 
( )( ) ( )( ) ( ) ( )[ ]!"###!##!"#!$$ %++++%%+= 1

'""
1

' cos111cos12 IIDE  
 
In reality, the blade shape in the two receptors and the inverter is not identical (Fig. 10) and 
thus the coefficients I!! ,'  and  "!  are not the same (

! 

" '' >" ' ).  Nevertheless, in order to ease 
the discussion of the expression of E!  , we assume : 
 

!!!! === "'
I  

 
It results in: 

( ) ( ) ( )[ ]!""#"!"$$ 2
1

2 2cos112 ++%++= DE  
 

5.3 Triangle of the optimal velocities in section 1 
 
As in the case of the stage efficiency for the impulse turbine with one velocity drop, the 
influence of a small variation of the values of the angle 1!  on D!  and on !  is neglected. 
 
Il follows that ( )!"## ;1EE =  and that the maximum of this efficiency must be found in 
function of these two parameters.   
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The expression of E!  shows that: 

( )
( )2

1
2

22
cos1

!!
"!

#
++

+
=opt  

what gives then: 
( )( ) optDE !""## 211

max
++=  

 
With the followings values: ;85,0=!     ;9,0=D!     ¡=171!  
 
we find:         13,0=opt!       and        64,0

max
=E!  

The stage efficiency is zero for 0=!  (thus u = 0) and 
( )
( ) opt!

""
#"

! 2
1

cos1
2

1
2

=
++

+
= . 

 
The curve of E!  in function of !  is given on Figure 11. 
 

6. Performance of an existing stage in off-design conditions 
 
Once the machine built, it is quite possible that it is used in working conditions where v1 and 
u are different from the design values v1d and ud . 
It follows then that:  ( ) ( ) ( )ddd 333222111 ;; !!!"""!!! =#=#=#  
 
Shocks are present at the entrance of the blade rows:  

"""
1

''
1

'
2 ;; riIrIiIri www !!!!!!!!! ====  

 
'' ;; iIii !!! , are coefficients with a value decreasing gradually when the following differences 

332211 ;; !!""!! ###  increase. 

 
As far as the flow remains Ç clean È, i.e. it follows the direction imposed by the shape of the 
blades for the different exits, one admits that:  
 

332211 ;; !!""!! ===  
 
One can then draw the velocity triangles and compute, using the formula of E!  given before, 
the value that the stage efficiency will get for working regimes different from the design 
point.  The validity of the values obtained for E!  will be improved with the better estimates of 

D!  and ! . 
 
The stage characteristics TR(N) is, as for the impulse stage with one single velocity drop, a 
decreasing curve of N. 
 

7. Optimum speed coefficient and pressure drop 
 
The optimum value of the velocity coefficient !  is a bit lower than 0,25. 
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If one neglects v0 , one finds 

!  

v1= 2 1" # h0 " h1i  and opt! ! 0,25. This leads to 

ihhu 10225,0 !" # with !  the velocity reduction coefficient of the distributor.  

  
The value of u being limited (e.g. lower than 300 m/s), the isentropic enthalpy drop h0-h1i, 
thus the pressure drop p0-p1, must be limited. 
 

8. Numerical example 
 
Considering the case of a pressure drop and of an isentropic enthalpy drop identical to the 
values of the single velocity drop example. The absolute velocity v1 at the inlet of the rotor is 
equal to 1132 m/s. 
With a two-velocity drop turbine, the optimal value of u is about equal to 283 m/s.  This value 
of u is certainly acceptable.  The stage will thus be able to be used / to work at its optimum 
velocity coefficient thus delivering a maximum stage efficiency. 
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C. Impulse stage with three velocity drops 

9. Reason to build it - Organization 
 
When the available enthalpy drop is extremely important, the absolute velocity of the gas and 
thus its kinetic energy at the exit of the second receptor can still be very high.  This induces a 
large loss for the stage except if, through a second fixed inverter, one sends the gas towards a 
third rotor. 
 
The impulse stage with three velocity drops will be made of a fixed distributor, where the 
whole expansion of the gas is taking place followed by three rotating receptors having in 
between two fixed inverters.  The pressure remains constant in the rotors and inverters. 
 

10.  Optimum value of the velocity coefficient and of the stage efficiency 
 
One follows a similar rational as for the previous case with two velocity drops, and finds that 

the optimum value of the velocity coefficient !  is 
8

cos 1!
" =opt , thus about 0,125. 

 
For this value of ! , the stage efficiency E!  of the impulse stage with three velocity drops is 
maximum and reaches about 50%. 
 

11. Comparison between the three types of impulse stages 
 
The optimum value of the speed coefficient decreases gradually as the number of velocity 
drops increases.  That is interesting for what concerns the use of the available isentropic 
enthalpy drop, which can be higher and higher. 
 
Nevertheless, at the same time, the value of the maximum stage efficiency is also decreasing, 
not a good point.  This reduction of the maximum value of E!  is so that the number of speed 
drops is never higher than 3.  It is most often equal to 2. 
 
Figure 12 allows the comparison of stage efficiencies E!  in function of ! , for the three types 

of stages. It clearly shows that, for the values of !  between 0 and 
8

cos 1!
, the difference in 

efficiency between the stages with 2 or 3 velocity drops, is minimal, whereas the cost of a 3-
velocity drop stage is much higher. 
 
Globally, it is normally more interesting to use a 2-velocity drop stage with a speed 

coefficient lower than 
4

cos 1!
, than a 3-velocity drop stage working at its !  optimum. 
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¤ 2.  Turbine reaction stage 

12. Organisation  
 
The reaction stage includes (Fig. 13): 
 

- A ring of stationary blades (called stator vanes or NGVs and connected to the external 
casing) that form a set of nozzles in which the steam or gas pressure decreases from p0 
(stator vanes inlet) to p1 (stator vanes outlet). Due to this expansion, the steam or gas 

kinetic energy increases from .
22

2
1

2
0 v

to
v

 

- A ring of rotating blades, fed by the stator vanes, in which the steam or gas pressure 

decreases from p1 to p2. Simultaneously, the kinetic energy decreases from .
22

2
2

2
1 v

to
v

  

Therefore, pressure and kinetic energies are transformed into mechanical energy on 
the shaft supporting the disk and the rotor blades.  
 

Two issues have to be studied: 
 

- Shape of stator and rotor blades in order to convert the energy as efficiently as 
possible, 

 
- Equations that describe the energy conversion from a qualitative and quantitative point 

of view. 
 

13. Transformations and velocity triangles 
 

13.1 Stator vanes (distributor) 
 
At the inlet of stator blades, the fluid is characterized by the pressure p0, the temperature t0 (or 
the steam quality or dryness fraction x) and the velocity v0. The point 0 (Fig.14) represents 
this state. 
 
As the pressure drop p0-p1 is created in stationary nozzles, one can write:  
 

( )10
2
01 2 hhvv !+=  

( )( )ihhvv 10
2
01 12 !!+= "  

 
The velocity v0, which was negligible for impulse turbines (20v  was low compared to the 
enthalpy drop h0-h1), cannot usually be neglected for reaction turbines. The pressure drop in 
the stator vanes follows the transformation 0-1 (Fig. 14). 
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13.2 Inlet section of rotor blades (receptor) 
 
As the angle 1!  and the peripheral velocity u1 are known, the velocity triangles at the inlet of 
the rotor blades can be drawn (Fig. 15).  Consequently, the relative velocity w1 and the angle 

1!  can be determined.  
 

13.3 Rotor blades (receptor) 
 
Another pressure drop p1-p2 has to take place in the inter-blade channels of the rotor. The 
kinetic energy equation, for a rotating system, applied to the flow through the rotor channels, 
can be written: 
 

! ""=
" 2

1

"
2
1

2
2

2
p

p fwdpv
ww

 

 
As dp is negative, the relative velocity w2 is higher than w1. 
 
The energy conservation equation gives: 
 

21

2
1

2
2

2
hh

ww
!=

!
 

 
As u2 is equal to u1, theses equations are similar to those used for flows in non-rotating 
channels (inter-blade channels of the stator), the relative velocity w replacing the absolute 
velocity v. 
 
The inter-blade channels of the rotor must be designed as expansion nozzles in which the 
relative velocity must rise. 
 
If the losses are negligible (if "fw  is equal to zero), the expansion in the inter-blade channels 

of the rotor follows the transformation '21 i!  (Fig. 14).  But as the real expansion involves an 
increase of the entropy, the point 2 which represents the final state of the transformation is 
located at the right side of point'2i .  The curve 1-2 is pseudo-figurative representation of the 
real evolution in the rotor.   
 
The point 2 is determined using an experimental re-heat coefficient "!  given by: 

'
21

'
22"
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hh
hh
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="  

Thus: 

( )( )
2

1
2
1

2
2'

21
"

21

ww
hhhh i
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=!!=! "  

 
The shape of rotor blades depends on the angles 1! and 2! . During a stage design project, we 

are choosing 11 !! = . 
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As the inlet relative velocity w1 is subsonic, the shape of the inter-blade rotor channels must 
be designed as convergent or convergent-divergent nozzles in order to obtain an expansion of 
steam. This can be done when choosing appropriate blade shape and height.  
 
Convergent nozzles are used when the pressure drop must be limited in order to obtain an 
outlet relative velocity w2 lower than the speed of sound. For convergent nozzles, the Figure 
16 clearly shows that the values of angles 21 !! et  depend on the variation of flow cross-
sectional area (perpendicular to the axis) that must be completed. As the distance between 2 
blades is constant in sections 1 and 2, the cross Ðsectional area variation is achieved by acting 
on the blade height.  
 
If 2121 , AA == !! (Figure 16a) and neglecting the losses, we have w1 = w2. Therefore, no 
expansion and no variation of absolute velocity are achieved in the inter-blade channels. 
There is no energy conversion and no mechanical energy is available on the shaft.  

13.4 Velocity triangle at the outlet of rotor blades 
 
When u2, w2 and 2!  are known ( 2!  is selected equal to2! ), the velocity triangles at the 
outlet of rotor blades can be drawn (Figure 15) and thus, the values of v2 and 2! can be 
calculated. 
 

The absolute kinetic energy 
2

2
2v

 is lost if this turbine stage is not followed by another stage or 

component that can take benefit from this energy. 
 

14. Losses - Recovery 
 
Energy loss in inter-vane channels of the stator is equal to:  
 

i
i hh

vv
11

2
1

2
1

2
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!
 

It is represented on a T-s diagram (Fig. 14) by the projection area11i . 
 
Energy loss in inter-blade channels of the rotor is equal to: ihh '22 !  

and it is represented by the projection area 22'
i . 

 

LetÕs compare the sum of these losses (i.e. the projection area2121 '
ii ) with the stage loss 

represented by 22i  (as the real transformation follows 0-1-2 while the ideal loss-free 
transformation would follow 0-2i): a part of losses in the stator, represented by the area 
( )iii 2211 ' , is recovered over the stage.  This can be explained by the fact that friction losses 
in the stator vanes are converted into heat that is partly recovered in the rotor blades. 
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15. Power delivered to the rotor (receptor) 
 
The power RP  delivered by the fluid to the rotor is given by the Euler-Rateau equation: 
 

( )2211 coscos !! vvumP RR "= &  
 
Using the velocity triangles and the kinetic energy equation, for a rotating system, applied to 
the flow through the rotor channels, the Euler-Rateau equation can also be written: 
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which shows the operating principle of turbine reaction stage. 
 
The torque applied by the fluid on the rotor blades is given by: 

 

( )2211 coscos !!
"

vvrmP
mR

R #= &  

As:  
 

1111 coscos !" wuv +=  and 2222 coscos !" wuv +=   
This torque becomes: 

( ) mR
R rwwm

P
2211 coscos !!

"
#= &  

 
This formula clearly shows that the angles 1!  and 2!  are very important regarding the energy 
and power conversion.  In the case of blade shapes of Figure 16a, no torque can be delivered 
to the rotor on the contrary of the blades of Figures 16b and c. 
 

16. Degree of reaction 
 
The degree of reaction is defined as follows:  
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According to the pressure drop in the rotor blades, the degree of reaction can sometimes be 
higher than 1. The stage is then considered as a superreaction stage.  
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17. Parsons turbine reaction stage 
 
Frequently, the stator and rotor blades are designed with the same shape (or angles). However 
rotor blades are rotated by 180¡ around their symmetry line (Fig. 17).   
 
Therefore: 01 !"# $=   and   12 !"# $=  
 
Moreover, the blade height is selected in order to obtain a constant axial velocity over the 
stage. 
 
This kind of turbine stage is called Ç Parsons È: name of the inventor of the reaction turbine 
(1884). 
 
Therefore, in a Parsons turbine, the velocity triangles at the inlet and the outlet of the rotor 
blades (Fig. 18) are symmetrical about the axial direction.   
 
So: 0221012 ; !! ==== andwvvwv  
 
When a turbine includes multiple Parsons stages, every stator and rotor blades of every stage 
has the same shape: only the blade height varies over the stages.  
 
From now on, we will suppose that reaction stages are always Parsons stages. However, other 
types of reaction stages exist and are used. 
 

18. Degree of reaction of Parsons stage Ð Enthalpy drop 
 
From the definition of the reaction degree:  
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and taking velocity triangles into account (Fig. 18), the reaction degree R is equal to 0,5. 
 
Regarding the enthalpy drop in stator and rotor blades, one can write:  
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Thus: 2110 hhhh !=!  
 
The real enthalpy drops in the stator and in the rotor are equal. 
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As the blades have the same shape, the re-heat coefficients '! and "! of the stator and the 
rotor are almost equal.   
 

But:   '
10

10 1 !"
"

="
hhhh i    and   "

21
'21 1 !"

"
="

hh
hh i  

 
 
So:  ii hhhh '2110 !=!  
 
 
The isentropic enthalpy drops are also equal. 
 
Moreover, the point 1 (Fig. 14) is very close toi1 , so: iii hhhh '2121 !"!  
 
Finally, iii hhhh 2110 !"!  
 
 
In conclusion, for Parsons stages, the enthalpy drop, which is due to the pressure drop 

20 pp ! across the stage, is almost equally distributed between the stator and the rotor.  
 

19. Stage efficiency and pre-design study   
19.1 Stage efficiency 
 
The stage efficiency is given by: 
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The velocity triangles (Fig. 18) and the enthalpy drops in the stator and the rotor can be 
determined if 11, !anduv  are known (due to relationships between kinetic energy variations 
and enthalpy drops). 
 
Therefore, E! can be expressed in function of v1, u and #1 in order to find optimum values of 

1! and of the velocity coefficient! . 
 
We assume that blade angles are equal to flow angles( )22111100 ;;; !!!!"""" ==== . 
 
As  
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In this expression: 
 

112222 coscoscos !"! vuwuv #=+=  
and 
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Substituting in the expression of the stage efficiency and using the ratio 
v
u

 which is the 

velocity coefficient! , we find: 
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This equation can also be expressed (in order to facilitate the discussion) as: 
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19.2 Optimization of 1!  and !  

 
The re-heat coefficient ! depends on the curvature of flow streams. If this influence is 

neglected, we can suppose, as a first approximation, that .' Const== !!  The expression of 

E! shows that the efficiency is maximum for: 
 
- 1!  as low as possible.  Therefore, 1! is selected around 20¡; 
- 1cos!" =  and thus the velocity coefficient is close to 1. 
 
The stage efficiency is equal to zero when:  1cos20 !"" == and  
 
For 1cos!"" == opt , the maximum stage efficiency is equal to: 
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The graph of E!  in function of !  is a kind of parabolic curve as depicted in Fig. 19. 
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20. Off -design operation of the stage 
 
If, once the turbine stage is built, the pressure drop 20 pp !  differs from the design pressure 

drop( )dpp 20 ! , or if the peripheral velocity u differs from ud, the velocity triangles are 
modified and the flow angles become different from blade angles.  Shocks occur at the inlet of 
blade rings that adversely affects the stage efficiency. 
 
To take this phenomenon into account, slowdown coefficients "'

ii and!! are used and their 
values depend on the shock intensity: the maximum value is 1 when there is no shock and 
so 1100 !!"" == et . The values of "'

ii and!!  decrease when increasing the difference 

between the flow and blade angles ( 1100 !!"" ## and ). 

 
The kinetic energy losses due to shocks at blade inlet are given by: 
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Flow velocities at the outlet of stator and rotor inter-blade channels are, taking shocks into 
account, given by: 
 

( ) ( )( )ii hhvv 10
'2

0
'

1 1 !!+= "#  

 

( ) ( )( )'21
"2

1
"

2 1 ii hhww !!+= "#  

 
If the operating conditions do not deviate too much from the design conditions, we can 
assume that, at the blade ring outlet, the flow angles are nevertheless identical to blade angles 
(thus )2211 !!"" == and . Using equations developed previously and selecting values for 
the coefficients 

"'"' !!"" ii  
 

the velocity triangles can be drawn and then, the stage efficiency, the torque and the power 
delivered by the fluid to the rotor can be calculated by the following equations: 
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For the same pressure drop, the stage characteristic (curve of the torque TR in function of the 
rotational speed N or the peripheral velocity u) is a decreasing curve. 
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¤ 3. Comparative study of the stage types 
 

21. Optimum velocity coefficient 
 
The velocity coefficient optimum values of the impulse stage, with one or two velocity drops, 
and of the Parsons reaction stage are compared regarding their influence on the pressure drop, 
enthalpy drop and peripheral velocity. 
 
The T-s diagrams of these three kinds of stages are depicted in Fig. 20. 
 
The isentropic enthalpy drop that can theoretically be achieved over the stage (0-1i for the 
impulse stages and 0-2i for Parsons reaction stage) is called .ish!  
 
The optimum values of the velocity coefficient are: 
 

- Impulse stage with 1 velocity drop : 
2
1

2
cos 1 !=

"
#opt  

- Impulse stage with 2 velocity drops : 
4
1

4
cos 1 !=

"
#opt  

- Parsons reaction stage: 1cos 1 != "#opt  

 
If we assume that:  
 

- Whatever the type of stage, the re-heat coefficients are identical and equal to ! , 

- The kinetic energy 
2

2
0v

can be neglected (this approximation is more rough for Parsons 

stage than for the two impulse stages),  
 
then, from the general formula: 
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we can write :  
 

ihhkv 101 !=  

 
In this formula:  
 

- for impulse stages: isi hhh !=" 10  

- for Parsons stage: 
210
is

i
hhh !

="  
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Substituting 1v  by 
opt

u
!

, the values of u, when operating at the optimum velocity coefficient, 

are: 
 

- Impulse stage with 1 velocity drop: ishku !"
2
1

 

 

- Impulse stage with 2 velocity drops: ishku !"
4
1

 

 
- Parsons reaction stage: u !  k &#his 

 
Therefore, for the same value of the isentropic enthalpy dropish! : 
 

reactionParsonsdropimpulsedropsimpulse uuu << 1,2,  

 
What is even more important, from a practical aspect, is to be able to compare enthalpy drops 
that can be used (when the peripheral velocity umax, which depends on the material employed 
and on the temperature, is imposed). 
 
LetÕs write previous formula as follows: 
 

- Impulse stage with 1 velocity drop: 2

24
k
u

his =! , that will be used for compactness 

purposes, 
 

- Impulse stage with 2 velocity drops: 2

216
k
u

his =! , that will be used when long life of 

the system is required and a high efficiency, 
 

- Parsons reaction stage: 2

22
k
u

his =! , for a high efficiency in a non-continuously 

operated application. 
 
Thus, when operating at the optimum velocity coefficient, the isentropic enthalpy drop for the 
impulse stage with 2 velocity drops is 4 times higher than the impulse stage with 1 velocity 
drop, and 8 times higher than the Parsons stage. 
 
The impulse stages are therefore well suited to obtain a large enthalpy drop in a few stages: 
they are Ç compact È. 
 

22. Stage efficiency 
 
Fig. 19 clearly shows that, when operating at the optimum velocity coefficient, the Parsons 
reaction stage has the highest efficiency, what is a key advantage.   
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How does the efficiency vary when the operating conditions deviate from the design 
conditions? 
 
To answer to this question, we need to build the curves of the stage efficiency, for the three 

types of stage, by giving to u and 1v (and thus to
1v

u
=! ) values different from the design 

conditions. These curves, drawn in function of! , have a similar shape than those of Figure 
19, although, at right side and at the left side of the design conditions( )optEopt !" , , these curves 

are located under those of Figure 19. 
 
Thus, the efficiency variations, close to the maximum value, are lower for the Parsons 
reaction stage than for the two impulse stages. In other words, when the velocity coefficient 
differs from the value that was given during the stage design (in order to obtain the maximum 
stage efficiency), the stage efficiency deviates faster from its maximum value for an impulse 
stage (with 1 or 2 velocity drops) than for a reaction stage. The Parsons turbine is said to be 
Ç more flexible È.  This is only valid if the operating conditions do not too much differ from 
the design (flow) conditions.  
 
 
 
 
 
 
 


